Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Tetraaquabis(tetrazolido- κN^{1})magnesium

Ti-Lou Liu, ${ }^{\text {a }}$ Ji-Hua Deng ${ }^{\text {b }}$ and Shuang-Jiao Sun ${ }^{\text {a }}$

${ }^{\text {as }}$ Shaoyang Medical College, Shaoyang, Hunan 422000, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi 336000, People's Republic of China
Correspondence e-mail: sshj_2008@yahoo.cn
Received 7 July 2010; accepted 12 July 2010
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.097$; data-to-parameter ratio $=9.2$.

In the crystal structure of the title compound, $\left[\mathrm{Mg}\left(\mathrm{CHN}_{4}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$], the $\mathrm{Mg}^{\mathrm{II}}$ atom is six-coordinated by two N atoms from two tetrazolide anions and four O atoms from four coordinated water molecules in a slightly distorted octahedral geometry. The Mg atom is located on centres of inversion whereas the tetrazolide anion and the water molecules occupy general positions. The crystal packing is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding between the tetrazolide anions and the coordinated water molecules.

Related literature

For metal complexes with tetrazolide anions, see: Zhang et al. (2007); He et al. (2006).

Experimental

Crystal data
$\left[\mathrm{Mg}\left(\mathrm{CHN}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=234.49$
$V=459.7(3) \AA^{3}$
Monoclinic, $P 2_{1} / c$
$Z=$
$a=5.7570$ (19) \AA
Mo $K \alpha$ radiation
$b=11.638$ (4) \AA
$\mu=0.21 \mathrm{~mm}^{-1}$
$c=6.963$ (2) \AA
$T=173 \mathrm{~K}$
$\beta=99.785$ (5) ${ }^{\circ}$
$0.36 \times 0.28 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	1806 measured reflections
diffractometer	792 independent reflections
Absorption correction: multi-scan	709 reflections with $I>2 \sigma(I)$
$(S A D A B S ;$ Bruker, 1998)	$R_{\text {int }}=0.015$

> (SADABS; Bruker, 1998)

709 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$T_{\text {min }}=0.929, T_{\text {max }}=0.955$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.35$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.25$ e $^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 B \cdots{ }^{3}{ }^{\text {i }}$	0.83 (2)	1.96 (2)	2.7797 (19)	173 (2)
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 1^{\text {ii }}$	0.88 (2)	1.89 (2)	2.755 (2)	169 (2)
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 4^{\text {iii }}$	0.81 (2)	2.15 (2)	2.956 (2)	173 (2)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 4^{\mathrm{iv}}$	0.83 (2)	2.06 (2)	2.892 (2)	171 (2)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2193).

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
He, X., Lu, C.-Z. \& Yuan, D.-Q. (2006). Inorg. Chem. 15, 5760-5766.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, X.-M., Zhao, Y.-F., Zhang, W.-X. \& Chen, X.-M. (2007). Adv. Mater. 19, 2843-2846.

supplementary materials

Tetraaquabis(tetrazolido- κN^{1})magnesium

T.-L. Liu, J.-H. Deng and S.-J. Sun

Comment

Tetrazolide anions are found in a number of metal complexes as ligands and the crystal structures and properties of several of such metal complexes have been reported in literature (Zhang et al., 2007; He et al., 2006) In the present contribution we report the synthesis and crystal structure of it's magnesium(II) complex. In the crystal structure of the title compound the Mg atoms are six-coordinated by two N atoms from two symmetry equivalent tetrazolide anions and four O atoms of two pairs of symmetry equivalent water molecules. The coordination polyhedra around the Mg atoms can be described as slightly distorted tetrahedra (Fig. 1). In the crystal structure the complexes are connected by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding into a three-dimensional network (Fig. 2 and Tab. 1).

Experimental

A solution of $\mathrm{MgCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ in water $(5 \mathrm{ml})$ was slowly added to a solution of tetrazole (1 mmol) in water $(14 \mathrm{ml})$ with continuous stirring at room temperature. After 30 minutes, the mixture was sealed in a 25 ml Teflon-lined stainless steel vessel and heated under autogenous pressure at $160^{\circ} \mathrm{C}$ for 4 days, then slowly cooled to room temperature. The colorless crystals were collected by filtration, washed with distilled water and dried in air. Yield: 60% (based on Mg).

Refinement

The H atoms of the tetrazole ligands were placed in geometrically idealized positions with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and were refined isotropic using a riding model with $U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$. The H atoms of the coordinated water molecules were located in the difference Fourier maps and refined isotropic with varying coordinates.

Figures

Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-labeling scheme. Symmetry code: $i=x, y, z$.

supplementary materials

Fig. 2. Crystal structure of title compound with view along the a axis. Hydrogen bonding is shown as dashed lines.

Tetraaquabis(tetrazolido- $\kappa N^{\mathbf{1}}$)magnesium

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{CHN}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=234.49$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=5.7570$ (19) \AA
$b=11.638$ (4) \AA
$c=6.963(2) \AA$
$\beta=99.785(5)^{\circ}$
$V=459.7(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.929, T_{\text {max }}=0.955$
1806 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$F(000)=244$
$D_{\mathrm{x}}=1.694 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1468 reflections
$\theta=3.5-26.9^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colorless
$0.36 \times 0.28 \times 0.22 \mathrm{~mm}$

792 independent reflections
709 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-5 \rightarrow 6$
$k=-13 \rightarrow 12$
$l=-7 \rightarrow 8$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.097$
$S=1.01$
792 reflections
86 parameters
6 restraints

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0716 P)^{2}+0.1838 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.35$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Mg1	0.5000	0.5000	0.0000	$0.0139(3)$
N1	$0.8863(2)$	$0.31027(12)$	$0.0878(2)$	$0.0188(4)$
N2	$0.6554(2)$	$0.32630(12)$	$0.02230(19)$	$0.0154(4)$
C1	$0.5683(3)$	$0.22168(15)$	$-0.0099(2)$	$0.0184(4)$
H1	0.4070	0.2058	-0.0575	0.022^{*}
N4	$0.7331(2)$	$0.14132(12)$	$0.0322(2)$	$0.0199(4)$
O1	$0.2683(2)$	$0.45460(11)$	$0.18011(19)$	$0.0187(3)$
O2	$0.7258(2)$	$0.54196(11)$	$0.25064(18)$	$0.0196(4)$
N3	$0.9328(3)$	$0.20068(12)$	$0.0938(2)$	$0.0200(4)$
H2A	$0.729(4)$	$0.4945(18)$	$0.341(3)$	$0.033(6)^{*}$
H1A	$0.256(4)$	$0.5042(18)$	$0.260(3)$	$0.037(7)^{*}$
H1B	$0.136(4)$	$0.417(2)$	$0.150(3)$	$0.043(7)^{*}$
H2B	$0.819(4)$	$0.594(2)$	$0.293(4)$	$0.045(7)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg 1	$0.0152(4)$	$0.0058(5)$	$0.0200(5)$	$-0.0001(3)$	$0.0007(3)$	$-0.0002(3)$
N 1	$0.0187(8)$	$0.0104(8)$	$0.0262(8)$	$0.0028(6)$	$0.0011(6)$	$0.0006(6)$
N 2	$0.0170(7)$	$0.0095(8)$	$0.0194(8)$	$0.0003(6)$	$0.0017(6)$	$-0.0003(5)$
C 1	$0.0192(8)$	$0.0115(9)$	$0.0235(9)$	$-0.0005(7)$	$0.0006(7)$	$-0.0002(7)$
N 4	$0.0242(8)$	$0.0090(8)$	$0.0255(9)$	$0.0007(6)$	$0.0015(6)$	$-0.0007(6)$
O 1	$0.0201(7)$	$0.0106(7)$	$0.0260(7)$	$-0.0027(5)$	$0.0053(5)$	$-0.0036(5)$

O2	$0.0237(7)$	$0.0105(7)$	$0.0221(7)$	$-0.0051(5)$	$-0.0034(5)$	$0.0019(5)$
N 3	$0.0227(8)$	$0.0108(7)$	$0.0256(8)$	$0.0026(6)$	$0.0014(6)$	$-0.0002(6)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

$\mathrm{Mg} 1-\mathrm{O} 1^{\text {i }}$	2.0492 (13)
$\mathrm{Mg} 1-\mathrm{O} 1$	2.0492 (13)
$\mathrm{Mg} 1-\mathrm{O} 2{ }^{\text {i }}$	2.0499 (13)
$\mathrm{Mg} 1-\mathrm{O} 2$	2.0499 (13)
Mg 1 - N 2	2.2053 (15)
$\mathrm{Mg} 1-\mathrm{N} 2{ }^{\text {i }}$	2.2053 (15)
N1-N3	1.302 (2)
N1-N2	1.343 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 1$	180.00 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 2^{\mathrm{i}}$	85.69 (6)
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 2^{\text {i }}$	94.31 (6)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 2$	94.31 (6)
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 2$	85.69 (6)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 2$	180.00 (7)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{N} 2$	88.91 (5)
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{N} 2$	91.09 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{N} 2$	91.86 (5)
$\mathrm{O} 2-\mathrm{Mg} 1-\mathrm{N} 2$	88.14 (5)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{N} 2^{\mathrm{i}}$	91.09 (5)
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{N} 2^{\mathrm{i}}$	88.91 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{N} 2^{\mathrm{i}}$	88.14 (5)
$\mathrm{O} 2-\mathrm{Mg} 1-\mathrm{N} 2^{\mathrm{i}}$	91.86 (5)
$\mathrm{N} 2-\mathrm{Mg} 1-\mathrm{N} 2^{\text {i }}$	180.0

Symmetry codes: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry (A, \circ)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{~N} 3^{\mathrm{ii}}$	$0.83(2)$	$1.96(2)$	$2.7797(19)$	$173(2)$
$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{~N} 1^{\mathrm{iii}}$	$0.88(2)$	$1.89(2)$	$2.755(2)$	$169(2)$
$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N}^{\mathrm{ivv}}$	$0.81(2)$	$2.15(2)$	$2.956(2)$	$173(2)$
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 4^{\mathrm{v}}$	$0.83(2)$	$2.06(2)$	$2.892(2)$	$171(2)$

Symmetry codes: (ii) $-x+2, y+1 / 2,-z+1 / 2$; (iii) $x-1, y, z$; (iv) $-x+1, y+1 / 2,-z+1 / 2$; (v) $x,-y+1 / 2, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

